233

Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress

Wang, M. Q., Huang, Q. X., Lin, P., Zeng, Q. H., Li, Y., Liu, Q. L., Zhang, L., et al., (2020).

The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance

in Verbena bonariensis. Front. Plant Sci., 10, 1746.

Wang, N. N., Xu, S. W., Sun, Y. L., Liu, D., Zhou, L., Li, Y., et al., (2019). The cotton WRKY

transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought

stress. Sci. Rep., 9, 1–13.

Wang, N., Zhang, W., Qin, M., Li, S., Qiao, M., Liu, Z., & Xiang, F., (2017). Drought tolerance

conferred in soybean (Glycine max. L.) by GmMYB84, a novel R2R3-MYB transcription

factor. Plant Cell Physiol., 58, 1764–1776.

Wang, Q. Y., Guan, Y. C., Wu, Y. R., Chen, H. L., Chen, F., & Chu, C. C., (2008). Overexpression

of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both

Arabidopsis and rice. Plant Mol. Biol., 67, 589–602.

Wang, W. X., Vinocur, B., & Altman, A., (2003). Plant responses to drought, salinity and

extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 219, 1–14.

Wang, W., Qiu, X., Yang, Y., Kim, H. S., Jia, X., Yu, H., et al., (2019). Sweet potato bZIP

transcription factor IbABF4 confers tolerance to multiple abiotic stresses. Front. Plant Sci.,

10, 630.

Wang, Z., Su, G., Li, M., Ke, Q., Kim, S. Y., Li, H., Huang, J., et al., (2016). Overexpressing

Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in

alfalfa. Plant Physiol. Biochem., 109, 199–208.

Wani, S. H., Dutta, T., Neelapu, N. R. R., & Surekha, C., (2017). Transgenic approaches to

enhance salt and drought tolerance in plants. Plant Gene., 11, 219–231.

Waqas, M., Azhar, M. T., Rana, I. A., Azeem, F., Ali, M. A., Nawaz, M. A., Chuang, G.,

& Atif, R. M., (2019). Genome-wide identification and expression analyses of WRKY

transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in

abiotic stress responses. Gene Genom., 41, 467–481.

Waters, E. R., Lee, G. J., & Vierling, E., (1996). Evolution, structure and function of the small

heat shock proteins in plants. J. exp. Bot., 47, 325–338.

Weber, W., & Fussenegger, M., (2011). Molecular diversity: The toolbox for synthetic gene

switches and networks. Curr. Opin. Chem. Biol., 15, 414–420.

Wiedenheft, B., Sternberg, S. H., & Doudna, J. A., (2012). RNA-guided genetic silencing

systems in bacteria and archaea. Nature, 482, 331.

Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., & Toriyama, K., (2009). Enhanced heat and drought

tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of

HSP101 promoter. Plant Cell Rep., 28, 21–30.

Wyn, J. R. G., (1984). Phytochemical aspects of osmotic adaptation. Rec. Adv. Phytochem.,

18, 55–78.

Wyvekens, N., Topkar, V. V., Khayter, C., Joung, J. K., & Tsai, S. Q., (2015). Dimeric CRISPR

RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific

genome editing. Hum. Gene. Ther., 26, 425–431.

Xiang, Y., Tang, N., Du, H., Ye, H., & Xiong, L., (2008). Characterization of OsbZIP23 as

a key player of the basic leucine zipper transcription factor family for conferring abscisic

acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 148, 1938–1952.

Xie, Y., Chen, P., Yan, Y., Bao, C., Li, X., Wang, L., Shen, X., et al., (2018). An atypical

R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-

independent pathways in apple. New Phytol., 218, 201–218.