233
Towards Engineering Smart Transcription Factors for Enhanced Abiotic Stress
Wang, M. Q., Huang, Q. X., Lin, P., Zeng, Q. H., Li, Y., Liu, Q. L., Zhang, L., et al., (2020).
The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance
in Verbena bonariensis. Front. Plant Sci., 10, 1746.
Wang, N. N., Xu, S. W., Sun, Y. L., Liu, D., Zhou, L., Li, Y., et al., (2019). The cotton WRKY
transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought
stress. Sci. Rep., 9, 1–13.
Wang, N., Zhang, W., Qin, M., Li, S., Qiao, M., Liu, Z., & Xiang, F., (2017). Drought tolerance
conferred in soybean (Glycine max. L.) by GmMYB84, a novel R2R3-MYB transcription
factor. Plant Cell Physiol., 58, 1764–1776.
Wang, Q. Y., Guan, Y. C., Wu, Y. R., Chen, H. L., Chen, F., & Chu, C. C., (2008). Overexpression
of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both
Arabidopsis and rice. Plant Mol. Biol., 67, 589–602.
Wang, W. X., Vinocur, B., & Altman, A., (2003). Plant responses to drought, salinity and
extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 219, 1–14.
Wang, W., Qiu, X., Yang, Y., Kim, H. S., Jia, X., Yu, H., et al., (2019). Sweet potato bZIP
transcription factor IbABF4 confers tolerance to multiple abiotic stresses. Front. Plant Sci.,
10, 630.
Wang, Z., Su, G., Li, M., Ke, Q., Kim, S. Y., Li, H., Huang, J., et al., (2016). Overexpressing
Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in
alfalfa. Plant Physiol. Biochem., 109, 199–208.
Wani, S. H., Dutta, T., Neelapu, N. R. R., & Surekha, C., (2017). Transgenic approaches to
enhance salt and drought tolerance in plants. Plant Gene., 11, 219–231.
Waqas, M., Azhar, M. T., Rana, I. A., Azeem, F., Ali, M. A., Nawaz, M. A., Chuang, G.,
& Atif, R. M., (2019). Genome-wide identification and expression analyses of WRKY
transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in
abiotic stress responses. Gene Genom., 41, 467–481.
Waters, E. R., Lee, G. J., & Vierling, E., (1996). Evolution, structure and function of the small
heat shock proteins in plants. J. exp. Bot., 47, 325–338.
Weber, W., & Fussenegger, M., (2011). Molecular diversity: The toolbox for synthetic gene
switches and networks. Curr. Opin. Chem. Biol., 15, 414–420.
Wiedenheft, B., Sternberg, S. H., & Doudna, J. A., (2012). RNA-guided genetic silencing
systems in bacteria and archaea. Nature, 482, 331.
Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., & Toriyama, K., (2009). Enhanced heat and drought
tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of
HSP101 promoter. Plant Cell Rep., 28, 21–30.
Wyn, J. R. G., (1984). Phytochemical aspects of osmotic adaptation. Rec. Adv. Phytochem.,
18, 55–78.
Wyvekens, N., Topkar, V. V., Khayter, C., Joung, J. K., & Tsai, S. Q., (2015). Dimeric CRISPR
RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific
genome editing. Hum. Gene. Ther., 26, 425–431.
Xiang, Y., Tang, N., Du, H., Ye, H., & Xiong, L., (2008). Characterization of OsbZIP23 as
a key player of the basic leucine zipper transcription factor family for conferring abscisic
acid sensitivity and salinity and drought tolerance in rice. Plant Physiol., 148, 1938–1952.
Xie, Y., Chen, P., Yan, Y., Bao, C., Li, X., Wang, L., Shen, X., et al., (2018). An atypical
R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-
independent pathways in apple. New Phytol., 218, 201–218.